Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 399: 130607, 2024 May.
Article in English | MEDLINE | ID: mdl-38499203

ABSTRACT

A halotolerant consortium between microalgae and methanotrophic bacteria could effectively remediate in situ CH4 and CO2, particularly using saline wastewater sources. Herein, Methylomicrobium alcaliphilum 20Z was demonstrated to form a mutualistic association with Chlorella sp. HS2 at a salinity level above 3.0%. Co-culture significantly enhanced the growth of both microbes, independent of initial inoculum ratios. Additionally, increased methane provision in enclosed serum bottles led to saturated methane removal. Subsequent analyses suggested nearly an order of magnitude increase in the amount of carbon sequestered in biomass in methane-fed co-cultures, conditions that also maintained a suitable cultural pH suitable for methanotrophic growth. Collectively, these results suggest a robust metabolic coupling between the two microbes and the influence of the factors other than gaseous exchange on the assembled consortium. Therefore, multi-faceted investigations are needed to harness the significant methane removal potential of the identified halotolerant consortium under conditions relevant to real-world operation scenarios.


Subject(s)
Chlorella , Methylococcaceae , Methane/metabolism , Chlorella/metabolism , Methylococcaceae/metabolism , Bacteria/metabolism
2.
Chemosphere ; 342: 140162, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37709062

ABSTRACT

Incorporation of wastewater from industrial sectors into the design of microalgal biorefineries has significant potential for advancing the practical application of this emerging industry. This study tested various food industrial wastewaters to assess their suitability for microalgal cultivation. Among these wastewaters, defective soy sauce (DSS) and soy sauce wastewater (SWW) were chosen but DSS exhibited the highest nutrient content with 13,500 ppm total nitrogen and 3051 ppm total phosphorus. After diluting DSS by a factor of 50, small-scale cultivation of microalgae was conducted to optimize culture conditions. SWW exhibited optimal growth at 25-30 °C and 300-500 µE m-2 s-1, while DSS showed optimal growth at 30-35 °C. Based on a 100-mL lab-scale and 3-L outdoor cultivation with an extended cultivation period, DSS outperformed SWW, exhibiting higher final biomass productivity. Additionally, nutrient-concentrated nature of DSS is advantageous for transportation at an industrial scale, leading us to select it as the most promising feedstock for microalgal cultivation. With further optimization, DSS has the potential to serve as an effective microalgal cultivation feedstock for large-scale biomass production.


Subject(s)
Chlorella , Microalgae , Soy Foods , Wastewater , Chlorella/metabolism , Phosphorus/metabolism , Food , Microalgae/metabolism , Biomass , Nitrogen/analysis
3.
J Microbiol Biotechnol ; 33(9): 1250-1256, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37317620

ABSTRACT

Herein, different extracts of Scenedesmus deserticola JD052, a green microalga, were evaluated in vitro as a potential anti-aging bioagent. Although post-treatment of microalgal culture with either UV irradiation or high light illumination did not lead to a substantial difference in the effectiveness of microalgal extracts as a potential anti-UV agent, the results indicated the presence of a highly potent compound in ethyl acetate extract with more than 20% increase in the cellular viability of normal human dermal fibroblasts (nHDFs) compared with the negative control amended with DMSO. The subsequent fractionation of the ethyl acetate extract led to two bioactive fractions with high anti-UV property; one of the fractions was further separated down to a single compound. While electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy analysis identified this single compound as loliolide, its identification has been rarely reported in microalgae previously, prompting thorough systematic investigations into this novel compound for the nascent microalgal industry.


Subject(s)
Microalgae , Scenedesmus , Humans , Acetates , Aging , Microalgae/chemistry
4.
Biotechnol J ; 17(1): e2100214, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34669258

ABSTRACT

Fructophilic behavior in microalgae is a rare trait that could benefit biorefineries by enabling substitution of carbon source with fructose, and our previous study identified that Ettlia sp. prefers fructose relative to glucose. In this study, by analyzing the transcription levels of genes related to sugar transport and the glycolysis pathway, the fructose utilization of Ettlia sp. was investigated. In a fructose-containing medium, the expression levels of fructokinase (EttFRK3) and glucokinase (EttGCK1 and EttGCK2) genes were significantly upregulated in heterotrophic cultivation of Ettlia sp. under fructose supplementation conditions. Further, a sugar transporter (EttSTF11) was significantly upregulated by 3.2-fold in 1 day, and this increase was analogous to the specific growth rate exhibited by the species. Subsequent cultivation tests with multi-sugar sources also showed a significant upregulation of EttSTF11 relative to other treatments without fructose. A phylogenetic tree derived from the analysis of different transporters of interest identified that EttSTF11 was adjacent to reference fructose transporters with a high bootstrap value of 71. Given that the transmembrane domains of EttSTF11 were analogous to those of reference fructose transporter genes, EttSTF11 appeared to play a critical role in fructose consumption and metabolism in Ettlia sp.


Subject(s)
Fructose , Glucose , Glycolysis/genetics , Heterotrophic Processes , Phylogeny
5.
Bioresour Technol ; 344(Pt B): 126397, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34822992

ABSTRACT

The era for eco-friendly polymers was ushered by the marine plastic menace and with the discovery of emerging pollutants such as micro-, nano-plastics, and plastic leachates from fossil fuel-based polymers. This review investigates algae-derived natural, carbon neutral polysaccharides and polyesters, their structure, biosynthetic mechanisms, biopolymers and biocomposites production process, followed by biodegradability of the polymers. The review proposes acceleration of research in this promising area to address the need for eco-friendly polymers and to increase the cost-effectiveness of algal biorefineries by coupling biofuel, high-value products, and biopolymer production using waste and wastewater-grown algal biomass. Such a strategy improves overall sustainability by lowering costs and carbon emissions in algal biorefineries, eventually contributing towards the much touted circular, net-zero carbon future economies. Finally, this review analyses the evolution of citation networks, which in turn highlight the emergence of a new frontier of sustainable polymers from algae.


Subject(s)
Microalgae , Biofuels , Biomass , Biopolymers , Carbon
6.
Bioresour Technol ; 346: 126358, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34800638

ABSTRACT

Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.


Subject(s)
Microalgae , Biofuels , Biomass , Plants
7.
Microb Cell Fact ; 20(1): 43, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588824

ABSTRACT

BACKGROUND: Nannochloropsis is a marine microalga that has been extensively studied. The major carotenoid produced by this group of microalgae is violaxanthin, which exhibits anti-inflammatory, anti-photoaging, and antiproliferative activities. Therefore, it has a wide range of potential applications. However, large-scale production of this pigment has not been much studied, thereby limiting its industrial application. RESULTS: To develop a novel strain producing high amount of violaxanthin, various Nannochloropsis species were isolated from seawater samples and their violaxanthin production potential were compared. Of the strains tested, N. oceanica WS-1 exhibited the highest violaxanthin productivity; to further enhance the violaxanthin yield of WS-1, we performed gamma-ray-mediated random mutagenesis followed by colorimetric screening. As a result, Mutant M1 was selected because of its significant higher violaxanthin content and biomass productivity than WS-1 (5.21 ± 0.33 mg g- 1 and 0.2101 g L- 1 d- 1, respectively). Subsequently, we employed a 10 L-scale bioreactor to confirm the large-scale production potential of M1, and the results indicated a 43.54 % increase in violaxanthin production compared with WS-1. In addition, comparative transcriptomic analysis performed under normal light condition identified possible mechanisms associated with remediating photo-inhibitory damage and other key responses in M1, which seemed to at least partially explain enhanced violaxanthin content and delayed growth. CONCLUSIONS: Nannochloropsis oceanica mutant (M1) with enhanced violaxanthin content was developed and its physiological characteristics were investigated. In addition, enhanced production of violaxanthin was demonstrated in the large-scale cultivation. Key transcriptomic responses that are seemingly associated with different physiological responses of M1 were elucidated under normal light condition, the details of which would guide ongoing efforts to further maximize the industrial potential of violaxanthin producing strains.


Subject(s)
Biomass , Mutation , Stramenopiles , Stramenopiles/genetics , Stramenopiles/growth & development , Stramenopiles/isolation & purification , Xanthophylls/metabolism
8.
Food Chem ; 337: 127777, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32799163

ABSTRACT

Biodegradable films based on chitosan, glycerol, and defatted Chlorella biomass (DCB) were prepared and characterized in terms of thermal stability, mechanical, water barrier, and optical properties. Increasing DCB content from 5 to 25 wt% increased tensile strength of chitosan films by 235%. The incorporation of DCB decreased both moisture content and swelling degree of chitosan/defatted Chlorella biomass (Cs/DCB) films. Furthermore, increasing the content of defatted algal biomass decreased light transmission and reduced water vapor permeability of composite films by more than 60%. As confirmed by scanning electron microscopy and Fourier transform infrared analysis, such improvement in functional and physical properties is mainly due to the homogeneous and uniform distribution of DCB into the polymeric matrix along with the establishment of strong hydrogen bond interactions between chitosan and algal biomass constituents. Moreover, Cs/DCB composite films showed more than 50% of degradation in 60 days soil burial test.


Subject(s)
Chitosan/chemistry , Chlorella/chemistry , Biomass , Chlorella/metabolism , Glycerol/chemistry , Hydrogen Bonding , Permeability , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry
9.
Sci Rep ; 10(1): 3429, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32076110

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Bioresour Technol ; 302: 122840, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32014729

ABSTRACT

Herein, a two-stage cultivation process was devised to overcome low pigment content of algal biomass grown in heterotrophy. Post-treatment conditions (i.e., light intensity, temperature, pH and salinity) were initially tested for dense heterotrophically-grown Chlorella sp. HS2 cultures in a multi-channel photobioreactor (mcPBR), and the results clearly indicated the influence of each abiotic factor on algal pigment production. Subsequently, the optimal post-treatment conditions (i.e., 455 µmol m-2 s-1, 34.8℃, pH 8.23 and 0.7% (w/v) salinity), in which highest accumulation of algal pigments is expected, were identified using Response Surface Methodology (RSM). Compared to the control cultures grown in mixotrophy for the same duration of entire two-stage process, the results indicated a significantly higher pigment productivity (i.e., 167.5 mg L-1 day-1) in a 5-L fermenter following the post-treatment at optimal conditions. Collectively, these results suggest that the post-treatment of heterotrophic cultures can be successfully deployed to harness the nascent algae-based bioeconomy.


Subject(s)
Chlorella , Heterotrophic Processes , Biomass , Photobioreactors , Salinity
11.
Front Neurosci ; 13: 1021, 2019.
Article in English | MEDLINE | ID: mdl-31616244

ABSTRACT

Human decision-making that involves moral dilemmas is a complex process, as individuals try to adhere to their moral values while their actual decisions can be influenced by several situational constraints. When facing a moral conflict that can bring a gain or loss for a decision-maker but a corresponding loss or gain for others, the decision-maker's choice of resolution strategy lies in its relating to gain-loss asymmetry by placing greater utility weight on his or her immediate gains and delayed losses. Although many neuroimaging studies have unveiled the neural mechanisms that underlie moral decision-making, little attention has been paid to the temporal dynamics of how a decision-maker assesses utility weights differently for a moral (or adaptive) choice that will bring loss (or gain) to himself (and others) when the outcome will be realized in the near versus distant future. This study identifies the electrophysiological mechanisms of time-dependent assessment in individuals' moral conflict resolution strategies. Twenty-two participants were given a set of moral dilemmas with time intervals that varied from the near future to the distant future. Participants chose between two conflicting options: a self-interest-seeking immoral choice (adaptive) and a principled moral choice (moral). Event-related potentials (ERPs) were recorded, and movement-related potentials (MRPs) were analyzed by being response-locked to individual moral choices. Behavioral results showed that participants took more time to respond and were more likely to make adaptive choices under the near-future condition. When the participants faced moral dilemmas, their brain waves manifested medial frontal negativity (MFN) at early stage ERP of 200-400 ms, possibly reflecting an internal moral conflict. Participants then exhibited larger late positive potentials (LPP) under the near-future condition. In addition, greater effort in implementing motor preparation was found under the near-future condition than under the distant future condition, as supported by the larger Bereitschaftspotential (BP) in the anterior areas. Our results illustrate the temporal dynamics of the electrophysiological mechanisms that underlie time-dependent assessments in moral decision-making, as human brains discount the decision utility of the moral outcomes that will occur in the distant future.

12.
Bioresour Technol ; 292: 121937, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31408779

ABSTRACT

This work aimed to demonstrate a new strategy for enhancing the production of carotenoids through the regulation of seesaw cross-talk between autophagy and carotenoid biosynthesis pathways in Chlamydomonas reinhardtii. Autophagy-related ATG1 and ATG8 genes were first silenced using artificial microRNA, which in turn reduced the mRNA expression of ATG1 and ATG8 by 84.4% and 74.3%, respectively. While ATG1 kinase controls early step in autophagy induction and ATG8 is an essential factor for the downstream formation of autophagosome membranes, the decreased expression of these genes led to a 2.34-fold increase in the amount of ß-carotene content (i.e., 23.75 mg/g DCW). Furthermore, all mutants seemed to exhibit greater biodiesel properties than that of wild-type due to increased accumulation of saturated and monounsaturated fatty acids. These results support the role of autophagy in regulating the production of valuable metabolites, which could contribute to uplifting the economic outlook of nascent algal biorefinery.


Subject(s)
Autophagy , Chlamydomonas reinhardtii , Carotenoids , beta Carotene
13.
Sci Rep ; 8(1): 5365, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29599450

ABSTRACT

Open algal cultivation platforms often suffer crop losses to herbivorous grazers that have potential to devastate biomass production within a few days. While a number of studies suggest synthetic chemicals as control agents for voracious algal grazers, environmental and safety concerns associated with the use of these chemicals encourage the exploration of alternative biological control agents. We hereby propose the application of a biosurfactant produced by Bacillus subtilis C9 (referred to as C9-biosurfactant) for controlling cladoceran grazers commonly found in algal cultivation systems. The results indicated that C9-biosurfactant completely eradicated Daphnia pulex and Moina macrocopa within 24 hours when concentrations were equal to or exceeded 6 mg/L. Moreover, supplying C9-biosurfactant into the cultures of selected algal species with and without cladoceran grazers indicated no adverse effect of C9-biosurfactant on the growth and lipid productivity of algal crops, while cladocerans were selectively controlled by C9-biosurfactant even under the presence of their prey. These results thus indicate that C9-biosurfactant could be an effective biocontrol agent for cladoceran grazers at industrial algal cultivation.


Subject(s)
Bacillus subtilis/metabolism , Chlorella/growth & development , Daphnia/drug effects , Lipopeptides/toxicity , Peptides, Cyclic/toxicity , Scenedesmus/growth & development , Surface-Active Agents/toxicity , Animals , Biomass
14.
J Microbiol ; 56(1): 56-64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29299841

ABSTRACT

Increased lipid accumulation of algal cells as a response to environmental stress factors attracted much attention of researchers to incorporate this stress response into industrial algal cultivation process with the aim of enhancing algal lipid productivity. This study applies high-salinity stress condition to a two-phase process in which microalgal cells are initially grown in freshwater medium until late exponential phase and subsequently subjected to high-salinity condition that induces excessive lipid accumulation. Our initial experiment revealed that the concentrated culture of Chlorella sorokiniana HS1 exhibited the intense fluorescence of Nile red at the NaCl concentration of 60 g/L along with 1 g/L of supplemental bicarbonate after 48 h of induction period without significantly compromising cultural integrity. These conditions were further verified with the algal culture grown for 7 days in a 1 L bottle reactor that reached late exponential phase; a 12% increment in the lipid content of harvested biomass was observed upon inducing high lipid accumulation in the concentrated algal culture at the density of 5.0 g DW/L. Although an increase in the sum of carbohydrate and lipid contents of harvested biomass indicated that the external carbon source supplemented during the induction period increased overall carbon assimilation, a decrease in carbohydrate content suggested the potential reallocation of cellular carbon that promoted lipid droplet formation under high-salinity stress. These results thus emphasize that the two-phase process can be successfully implemented to enhance algal lipid productivity by incorporating high-salinity stress conditions into the pre-concentrated sedimentation ponds of industrial algal production system.


Subject(s)
Chlorella/metabolism , Lipids/biosynthesis , Microalgae/metabolism , Sodium Chloride/metabolism , Chlorella/growth & development , Fresh Water/chemistry , Microalgae/growth & development , Salinity , Sodium Chloride/analysis
15.
Adv Mater ; 26(19): 2977-82, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24519985

ABSTRACT

A flexible hybrid anode from graphite and thin film silicon is realized by the concept of a 3D sandwich current collector by the combination of micro-contact printing and RF magnetron sputtering. Flexible lithium-ion batteries with a new hybrid anode demonstrate not only enhanced specific capacity but also improved rate capability compared to that of a conventional graphite anode under bending deformation.

16.
Neurobiol Aging ; 35(3): 511-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24126163

ABSTRACT

The progressive deposition of amyloid-ß (Aß) in the brain is a pathologic feature of Alzheimer's disease (AD). This study was aimed to determine whether endogenous tissue plasminogen activator (tPA) modulates the pathogenic process of AD. tPA expression and activity developed around amyloid plaques in the brains of human amyloid precursor protein-overexpressing Tg2576 mice, which were weakened by the genetic ablation of tPA. Although the complete loss of tPA was developmentally fatal to Tg2576 mice, tPA-heterozygous Tg2576 mice expressed the more severe degenerative phenotypes than tPA wild-type Tg2576 mice, including abnormal and unhealthy growth, shorter life spans, significantly enhanced Aß levels, and the deposition of more and larger amyloid plaques in the brain. In addition, the expression of synaptic function-associated proteins was significantly reduced, which in turn caused a more severe impairment in learning and memory performance in Tg2576 mice. Thus, endogenous tPA, preferentially its aggregate form, could degrade Aß molecules and maintain low levels of brain Aß, resulting in the delay of AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Tissue Plasminogen Activator/physiology , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Animals , Disease Progression , Learning , Memory , Mice , Mice, Transgenic , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism
17.
Opt Express ; 18 Suppl 4: A522-7, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21165084

ABSTRACT

A Polymeric mirror from 1D photonic crystal exhibiting full specular reflection is applied on the exterior of the counter electrode of a dye-sensitized solar cells (DSSCs). Reflection of exiting light from the cell allows for the reuse of the light and thereby significantly increases the efficiency of the DSSCs (from 8.07% to 8.85%). Furthermore, it is also found to be effective even with incorporation of an internal scattering layer, which is widely used within a TiO2 anode layer for enhancing light trapping in DSSCs (from 9.17% to 9.53%).

SELECTION OF CITATIONS
SEARCH DETAIL
...